微信扫码
添加专属顾问
我要投稿
“指令微调过程中,是否需要mask掉提示词部分的损失?”这似乎是个很常见的问题,很多训练仓库里边这部分输入的label都会改成-100,计算损失的时候,忽略这部分。当然也有的仓库会计算这部分,比如trl里边比较早的一些例子。
针对这种冲突,当然有一些研究给出了一些实验结果,如下图为,qlora中的一个对比图,发现只在target上训练上可以获得更好的效果。相对来说,这些实验因为都是一些附加实验,所以不够深入,今天的分享的文章深入探讨了这个问题。
简洁版结论:
名词定义:损失同时考虑prompt+response,称为IM(instruction modelling);损失只考虑response,称为IT(instruction tunning)
通过在 21 个不同的基准测试中进行实验,作者发现 IM 方法在许多情况下都能有效地提升 LMs 在自然语言处理(NLP)任务(例如 MMLU、TruthfulQA 和 HumanEval)以及开放式生成基准测试(例如 MT-Bench 和 AlpacaEval)上的性能。特别是在 AlpacaEval 1.0 上,IM 方法在最有利的情况下能够将模型性能提升超过 100%。
文章&实验代码仓库:
https://arxiv.org/pdf/2405.14394
https://github.com/ZhengxiangShi/InstructionModelling
简而言之,作者发现,在指令调整过程中同时考虑指令和输出,有效地提高了语言模型的性能,尤其是在数据资源受限或指令较长而输出较短的情况下。可能跟一些认知有些冲突,但是尝试一下可能是有意义的,毕竟这个跟数据集大小和长度都有关系。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-11-01
谷歌又出神器:只要给个网址,自动帮你出官网同款设计!
2025-11-01
让你的大模型读懂二方包
2025-11-01
基于 SubAgents 实现多模型融合,同时极致压缩成本
2025-11-01
Codex 积分制计费上线,Claude Code 急了……
2025-11-01
AI心理咨询师新突破:TheraMind引领长期治疗新范式及知识增强AI应用探讨
2025-11-01
基于本地LLM构建AI驱动的日志分析系统
2025-11-01
从“更大”到“更聪明”:蚂蚁集团推出 Ling 2.0,大模型推理进入“稀疏智能时代”
2025-10-31
Opera One升级内置AI 迎来智能助手新纪元
2025-08-21
2025-08-21
2025-08-19
2025-09-16
2025-10-02
2025-09-08
2025-09-17
2025-08-19
2025-09-29
2025-08-20