微信扫码
添加专属顾问
我要投稿
在 AI 大模型浪潮中,国内厂商面壁智能再次突破,推出了其最新的“小钢炮”系列——MiniCPM 3.0。这款全新模型不仅实现了在移动设备上运行 GPT-3.5 级别的能力,而且具备超强的推理、检索与代码解释功能。MiniCPM 3.0 以仅 4B 参数的“轻量级”模型,成功超越了 GPT-3.5,在移动端 AI 应用场景中展现出强大的实力。
无限长文本处理,性能随文本长度延展
MiniCPM 3.0 引入了 LLMxMapReduce 技术,实现了无限长文本的处理能力。无论是 32K 还是 512K,模型都能高效处理长文本,并且在长文档场景中具备超强的性能稳定性。
在长文本测试的 InfiniteBench Zh.QA 评测中,MiniCPM 3.0 甚至超越了 8B、9B 参数量级的对手 Kimi,展现出极为优异的表现。
端侧最强 Function Calling,媲美 GPT-4o
MiniCPM 3.0 是目前端侧设备上 Function Calling 性能最强的模型之一,能够精准理解用户输入,并转化为可执行的结构化指令。无论是调用日历、天气、还是手机中的文件和应用,MiniCPM 3.0 都能流畅响应。
在 Berkeley Function-Calling Leaderboard 上,MiniCPM 3.0 的性能接近 GPT-4o,证明了它在工具调用上的实力。
RAG 三件套:检索、排序、生成全能选手
MiniCPM 3.0 同时发布了 RAG(检索增强生成)三件套:MiniCPM-Embedding(检索)、MiniCPM-Reranker(重排序)和 MiniCPM3-RAG-LoRA(生成)。在多项检索任务中取得了 SOTA(State of the Art)的表现。
经过 LoRA 微调后,MiniCPM 3.0 在开放域问答、多跳问答等任务上,超越了 Llama3-8B 和 Baichuan2-13B,成为中英文跨语言检索的领导者。
从评测数据中可以看出,MiniCPM3-4B 在多个评测集上的表现优越,尤其在整体性能和工具调用能力方面展现了明显的领先优势。
在综合评测的平均分上,MiniCPM3-4B 以 66.3 的得分超越了 Qwen2-7B(65.3) 和 GLM-4-9B-Chat(65.0) 等大模型,展现出强大的综合能力。与部分 7B、9B 参数的大模型相比,MiniCPM3-4B 的性能表现显著更好,尤其是在中文能力、数学能力等任务中优势明显。
在工具调用能力的评测中,MiniCPM3-4B 在 BFCL(Berkeley Function Calling Leaderboard)上的得分高达 76.0%,领先于 Qwen2-7B-Instruct(71.6%) 和 GLM-4-9B-Chat(70.1%) 等多个更大参数模型,表现出超强的工具调用能力。相比于其他大模型,MiniCPM3-4B 在这方面的领先地位使其在实际应用中更加高效、灵活。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-09-12
运维老王:创业第十年,我用Elevo找回内心翻腾的梦想
2025-09-12
大模型可观测1-5-10:发现、定位、恢复的三层能力建设
2025-09-12
Qwen3-Next:用混合注意力和高稀疏 MoE 把训练与推理成本打下来
2025-09-12
阿里推出夸克医疗大模型:医考70%高分背后,RAG为何是“压舱石”?
2025-09-12
GPT-4o-mini 调用参数终极优化手册
2025-09-12
刚刚,ChatGPT支持MCP了!一句Prompt即可全自动化
2025-09-11
阿里云,这次杀疯了,断档第一
2025-09-11
利用抽象语法树AST提升代码问答的深度与精度(下)
2025-08-21
2025-06-21
2025-08-21
2025-08-19
2025-06-19
2025-06-15
2025-07-29
2025-09-08
2025-08-19
2025-08-20
2025-09-12
2025-09-11
2025-09-11
2025-09-09
2025-09-09
2025-09-08
2025-09-08
2025-09-07