微信扫码
添加专属顾问
 
                        我要投稿
深入解析大模型知识增强的关键技术,提升模型在特定领域的应用效果。 核心内容: 1. 大模型局限性及知识注入的必要性 2. 数据层注入(Prompt):通过提示词引导模型吸收新知识 3. 模型层注入(Finetune):模型微调与参数高效微调技术
 
                                通用大模型(如DeepSeek、Qwen)虽具备广泛的知识覆盖和基础推理能力,但仍存在以下局限性:
(1)知识短板:难以覆盖细粒度、动态更新的事实(如罕见病治疗方案、最新指南);
(2)逻辑薄弱:在复杂推理链、反常识逻辑或伦理判断中表现不足;
(3)领域偏科:在医疗、金融等专业领域,需垂直模型辅助才能满足高精度需求。
通过大模型的知识注入——数据层注入(Prompt)、模型层注入(Finetune)、推理层注入(RAG),可显著提升模型在特定场景下的表现。
限时五折优惠(系统学习大模型知识增强)
一、数据层注入(Prompt)
二、模型层注入(Finetune)
三、推理层注入(RAG)
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-10-31
OpenAI 公开 Atlas 架构:为 Agent 重新发明浏览器
2025-10-31
Palantir 本体论模式:重塑企业 AI 应用的 “语义根基” 与产业启示
2025-10-31
树莓派这种“玩具级”设备,真能跑大模型吗?
2025-10-30
Cursor 2.0的一些有趣的新特性
2025-10-30
Anthropic 发布最新研究:LLM 展现初步自省迹象
2025-10-30
让Agent系统更聪明之前,先让它能被信任
2025-10-30
Rag不行?谷歌DeepMind同款,文档阅读新助手:ReadAgent
2025-10-29
4大阶段,10个步骤,助你高效构建企业级智能体(Agent)
 
            2025-08-21
2025-08-21
2025-08-19
2025-09-16
2025-10-02
2025-09-08
2025-09-17
2025-08-19
2025-09-29
2025-08-20