微信扫码
添加专属顾问
我要投稿
Jina-Embeddings v4重磅发布,支持多模态输入与多向量检索,为RAG架构带来革命性升级! 核心内容: 1. 多模态统一编码架构突破传统双塔设计 2. 动态适配器实现异构检索/语义匹配/代码检索三合一 3. 在视觉文档等关键任务评测中全面领先竞品
模力方舟现已正式上线来自 Jina AI 的新一代通用向量模型 ——Jina-Embeddings v4,访问链接即可在线体验:https://ai.gitee.com/serverless-api?model=jina-embeddings-v4。
作为 Jina 系列嵌入模型的第四代版本,Jina-Embeddings v4不仅支持文本、图像等多模态输入统一编码,更首次在图文场景下实现了多向量检索(Late Interaction)能力,在复杂视觉文档、多语言问答、代码搜索等多个关键任务中取得了全面领先的性能表现。
Jina-Embeddings v4构建于Qwen2.5-VL-3B-Instruct基座模型之上,在底层架构上实现了图文统一表示的闭环。与传统的 CLIP 双塔架构不同,v4 模型采用共享编码路径,图像先通过视觉编码器转化为 token 序列,与文本一起输入语言模型,进行上下文感知处理。这种方式显著缩小了图文语义空间中的模态差距(modality gap),同时具备更强的跨模态语义理解能力。
模型支持两种输出形式:
这两种模式均可在推理阶段灵活选择,便于适配不同的存储与算力环境。
为了支持更复杂的应用需求,Jina-Embeddings v4内置三类基于 LoRA 微调的任务适配器(每类仅 60M 参数),可在推理阶段动态加载,分别针对:
这一设计不仅实现了「多任务共享主干 + 轻量化适配」的目标,也极大提升了模型在多样场景下的落地能力。
Jina-Embeddings v4在多个标准评测中表现突出,尤其在图文匹配与视觉文档检索任务中大幅领先。
得益于共享编码器架构与多向量表示机制,v4 能够精准建模图表、表格、说明文档等复杂视觉内容,在新基准 Jina-VDR 和 ViDoRe 上显著优于 CLIP 与同类模型。
同时,Jina-Embeddings v4在 MTEB 多语言语义匹配、长文本检索与代码搜索等任务中也保持强劲性能,展现出良好的通用性与扩展性。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-02-04
从“回答者”进化为“研究员”:全面解析 Deep Research
2026-02-04
刚刚,Xcode 史诗级更新:原生集成 Claude Agent SDK,苹果开发直接起飞!
2026-02-04
国产 Cowork 它来了!MCP、Skills和Expert Agents都支持,全部免费体验!
2026-02-04
混元研究博客上线姚顺雨团队最新成果:从 Context 探索语言模型的范式转变
2026-02-04
通俗讲解大模型短期记忆 vs 长期记忆
2026-02-04
谁动了我的电脑?谁应该抱怨?
2026-02-03
从 CLI 到桌面:Codex 把 coding agent 变成“任务指挥台”
2026-02-03
谷歌重大更新:国内手动开启 Gemini AI 侧边栏与 Auto Browse 自动浏览全攻略
2026-01-24
2026-01-10
2025-11-19
2025-11-13
2026-01-26
2026-01-01
2025-12-09
2025-11-12
2026-01-09
2025-12-21
2026-02-04
2026-02-03
2026-02-03
2026-02-02
2026-02-02
2026-02-02
2026-01-31
2026-01-30