微信扫码
添加专属顾问
我要投稿
Embedding技术揭秘:如何让机器理解人类世界的复杂关系? 核心内容: 1. Embedding的核心原理与作用:将符号转化为机器可理解的向量 2. 传统深度学习中的经典应用:词向量、推荐系统、图像处理 3. 大模型时代的新突破:多模态对齐、语义搜索与生成式模型
如果要用一句话来解释:Embedding 就是把原本“看不懂”的符号,翻译成机器能理解的数字向量。
想象一下:
人类能理解“苹果”和“香蕉”相似,和“桌子”差得远,但在计算机眼里,词汇最初只是符号(例如 ID 编号),没有任何语义。于是我们需要一种方法,把这些符号变成“有意义的数字坐标”,这套坐标体系就是 Embedding 空间,如图1所示。
Embedding 可以理解为一种“翻译器”,它把原本没有数值意义的离散符号(如词语、用户ID、商品、图片等)转化为低维、稠密的向量表示。这样做的好处是既能压缩数据、提升计算效率,又能在向量空间中保留语义或特征上的相似性,使得相似的对象更接近,不相似的对象更远。
在传统深度学习中,Embedding 常见于词向量和推荐系统;在大模型时代,它是语言模型、图文匹配、多模态对齐等任务的基础。可以说,Embedding 是机器理解世界的一种“坐标系”。
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2026-02-04
Skills使用体验
2026-02-04
AgentScope 正式发布 Skills 支持 - 实现渐进式披露
2026-02-04
从“回答者”进化为“研究员”:全面解析 Deep Research
2026-02-04
刚刚,Xcode 史诗级更新:原生集成 Claude Agent SDK,苹果开发直接起飞!
2026-02-04
国产 Cowork 它来了!MCP、Skills和Expert Agents都支持,全部免费体验!
2026-02-04
混元研究博客上线姚顺雨团队最新成果:从 Context 探索语言模型的范式转变
2026-02-04
通俗讲解大模型短期记忆 vs 长期记忆
2026-02-04
谁动了我的电脑?谁应该抱怨?
2026-01-24
2026-01-10
2025-11-19
2025-11-13
2026-01-26
2026-01-01
2025-12-09
2025-11-12
2026-01-09
2025-12-21
2026-02-04
2026-02-03
2026-02-03
2026-02-02
2026-02-02
2026-02-02
2026-01-31
2026-01-30