微信扫码
添加专属顾问
我要投稿
智能体工程是让AI从"能跑"到"敢用"的关键,揭秘大模型时代如何打造真正可靠的智能系统。 核心内容: 1. 智能体工程的核心循环:构建-测试-上线-观察-优化的迭代过程 2. 实现智能体工程的三大关键能力:产品思维、工程能力和数据科学 3. 行业领先企业如何应用智能体工程解决复杂业务问题
Agent Engineering: A New Discipline" class="rich_pages wxw-img" data-ratio="0.75" data-type="other" data-w="760" style="width: 404px;height: 303px;" data-imgfileid="100012985">
最近,智能体圈又卷出了新高度——智能体(Agent)开发。
如果你玩过智能体开发,肯定懂那种"本地跑得飞起,上线秒变智障"的痛。传统写代码嘛,输入输出都是明确的,基本不会出幺蛾子。但智能体不一样啊,用户想说啥就说啥,系统的行为可能性简直是无限大。这既是它牛逼的地方,也是它翻车的根源。
过去3年,我们看着成千上万的团队在这个坑里摸爬滚打。那些真正把产品稳定上线的公司——比如 Clay、Vanta、LinkedIn、Cloudflare——都没有照搬传统开发那套。他们摸索出了一条新路:智能体工程。
智能体工程其实就是一个不断迭代的过程,把那些"不太靠谱"的大模型系统,慢慢打磨成生产环境能用的稳定应用。核心就是一个循环:构建、测试、上线、观察、优化、重复。
划重点:上线不是终点,而是开始真正学习的时刻。
想让智能体真正靠谱,你必须知道它在生产环境里到底干了啥。这个循环转得越快,智能体就越稳。
我们发现,搞好智能体工程需要三种能力配合:
包括:
包括:
包括:
智能体工程不是什么新岗位,而是现有团队在开发这种"会思考、会适应、不太可控"的系统时,自然而然承担起来的一堆活儿。
实际工作中是这样的:
这些团队都在快速迭代,经常看到工程师追完Bug后,把发现交给产品经理调提示词;或者产品经理发现能力不够,需要工程师开发新工具。大家都明白,真正让智能体稳下来的方法,就是盯着生产环境的表现,然后系统性地优化。
两个根本性的变化,让智能体工程成了刚需。
第一,大模型已经强到能处理复杂的多步骤任务了。
我们看到智能体开始接手整个工作流,而不只是单个任务。比如:
我们正在跨过一个门槛——智能体开始在生产环境创造实打实的商业价值了。
第二,这种能力带来了真实的不可预测性。
简单的大模型应用虽然也有点随机,但行为还算可控。智能体不一样,它们要跨多个步骤推理、调工具、根据上下文适应。让它有用的特性,也让它的行为完全不同于传统软件:
每个输入都是边缘情况。用户能用自然语言提任何要求,没有"正常输入"这回事。当你说"让它炫一点"或"按上次那样但要不一样",智能体(跟人一样)可能有各种理解方式。
传统调试方法失效了。因为太多逻辑藏在模型内部,你必须检查每个决策、每次工具调用。提示词或配置改一点点,行为可能天翻地覆。
"能用"不是非黑即白的。智能体可能99.99%时间都正常,但偶尔就跑偏了。对于真正重要的问题,往往没有简单答案:智能体的调用对吗?工具用对了吗?理解了指令背后的意图吗?
把这些加起来——智能体在跑高影响力的工作流,但行为方式是传统软件搞不定的——这既是机会也是新领域的需求。智能体工程让我们能驾驭大模型的能力,同时搭建出生产环境真正靠得住的系统。
智能体工程的玩法跟传统软件开发不一样。要做出可靠的智能体,上线是为了学习,而不是学完了才上线。
成功的团队都是这么干的:
先设计智能体的基础架构。可能是带工具的简单大模型调用,也可能是复杂的多智能体系统。架构取决于需要多少确定性流程(工作流)和多少智能决策(大模型驱动)。
针对示例场景测试,找出提示词、工具定义、流程中的明显问题。但跟传统软件不同,你没法预测用户会怎么用自然语言跟它聊。思路要转变,从"测透了再上"变成"测差不多,上线学真东西"。
一上线,马上就会遇到各种没想到的输入。每条生产环境的追踪都会告诉你,智能体实际需要处理什么。
追踪每次交互,看完整对话、调用的每个工具,以及影响每个决策的具体上下文。在生产数据上跑评估,量化智能体质量——不管你关注的是准确率、延迟、用户满意度还是别的指标。
找到失败的模式后,通过改提示词、调工具定义来优化。这是持续的过程,可以把有问题的案例加回测试集,防止回归。
上线改进版,观察生产环境的变化。每个循环都会教你新东西——用户怎么跟智能体交互,可靠性在具体场景中到底意味着什么。
今天那些成功交付可靠智能体的团队,有一个共同点:他们不再试图在发布前把智能体搞完美,而是把生产环境当成最好的老师。
换句话说,追踪每个决策,大规模评估,几天内(而不是几个季度)就上线改进。
智能体工程的兴起,是因为机会摆在那里。智能体现在能处理以前需要人工判断的工作流,但前提是能让它们足够可靠到值得信任。
没有捷径,只有系统性的迭代。问题不是智能体工程会不会成为标准实践,而是团队能多快学会它,来释放智能体的潜力。
别急,国产AI的速度再次刷新了我们的认知。
这波智能体工程的浪潮才刚开始,工具和方法论都在快速演进。抓住这个机会,建立你的第一个智能体工程实践,体验一下让AI变靠谱的快乐吧!
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-15
治理之智 | 从零和博弈走向长期合作:人工智能版权问题分析与思考
2025-12-15
AgentScope x RocketMQ:打造企业级高可靠 A2A 智能体通信基座
2025-12-15
200k Tokens 的上下文真的够用吗?
2025-12-15
专家知识 x 技术放大:我在B端智能体落地一线的万字真实复盘
2025-12-15
字节AI神操作:AI生成接口自动化测试用例,效率拉满
2025-12-15
解析 Goose:为什么它会进入 AAIF,以及这对 Agentic Runtime 意味着什么
2025-12-15
Palantir的“本体论”:数字世界的底层革命
2025-12-15
Claude Skills|将 Agent 变为领域专家
2025-09-19
2025-10-26
2025-10-02
2025-09-17
2025-09-29
2025-10-07
2025-09-30
2025-11-19
2025-10-20
2025-11-13