微信扫码
添加专属顾问
 
                        我要投稿
从Langchain4j迁移到Spring AI?这篇实战指南帮你高效搭建知识库系统,轻松应对技术升级挑战。 核心内容: 1. 知识库表设计与环境搭建关键步骤 2. 基于Docker的Milvus向量库部署详解 3. Spring AI与Ollama模型集成实战方案
 
                                框架:Ruoyi-Vue-Plus版本:5.3.1Spring-boot版本:3.4.4JDK:17spring-ai版本:1.0.0需安装Ollama,且具备模型"nomic-embed-text"
资料已上传至技术群
ai_knowledge,ai_knowledge_document,ai_knowledge_segment,ai_model,ai_api_key
docker-compose --version
version: '3.5'services:  etcd:    container_name: milvus-etcd    image: quay.io/coreos/etcd:v3.5.18    environment:      - ETCD_AUTO_COMPACTION_MODE=revision      - ETCD_AUTO_COMPACTION_RETENTION=1000      - ETCD_QUOTA_BACKEND_BYTES=4294967296      - ETCD_SNAPSHOT_COUNT=50000    volumes:      - ${DOCKER_VOLUME_DIRECTORY:-.}/volumes/etcd:/etcd    command: etcd -advertise-client-urls=http://etcd:2379 -listen-client-urls http://0.0.0.0:2379 --data-dir /etcd    healthcheck:      test: ["CMD", "etcdctl", "endpoint", "health"]      interval: 30s      timeout: 20s      retries: 3  minio:    container_name: milvus-minio    image: minio/minio:RELEASE.2025-04-22T22-12-26Z    environment:      MINIO_ACCESS_KEY: minioadmin      MINIO_SECRET_KEY: minioadmin    ports:      - "9000:9000"      - "9001:9001"    volumes:      - ${DOCKER_VOLUME_DIRECTORY:-.}/volumes/minio:/minio_data    command: minio server /minio_data --console-address ":9001"    healthcheck:      test: ["CMD", "curl", "-f", "http://localhost:9000/minio/health/live"]      interval: 30s      timeout: 20s      retries: 3  standalone:    container_name: milvus-standalone    image: milvusdb/milvus:v2.5.13    command: ["milvus", "run", "standalone"]    security_opt:      - seccomp:unconfined    environment:      ETCD_ENDPOINTS: etcd:2379      MINIO_ADDRESS: minio:9000    volumes:      - ${DOCKER_VOLUME_DIRECTORY:-.}/volumes/milvus:/var/lib/milvus    healthcheck:      test: ["CMD", "curl", "-f", "http://localhost:9091/healthz"]      interval: 30s      start_period: 90s      timeout: 20s      retries: 3    ports:      - "19530:19530"      - "9091:9091"    depends_on:      - "etcd"      - "minio"  attu:    container_name: attu    image: zilliz/attu:v2.5.7    environment:      MILVUS_URL: milvus-standalone:19530    ports:      - "19500:3000"    depends_on:      - "standalone"networks:  default:    name: milvusdocker-compose up -d
docker images
docker ps
docker ps -a
docker restart etcd容器iddocker restart minio容器iddocker restart milvus容器iddocker restart attu容器id
# 浏览器访问miniolocalhost:9000
# 浏览器访问milvuslocalhost:19500
<tika.version>3.0.0</tika.version><spring-ai.version>1.0.0</spring-ai.version><commons-io.version>2.16.1</commons-io.version>
            <!-- Tika提取文件 必须 -->            <dependency>                <groupId>org.apache.tika</groupId>                <artifactId>tika-core</artifactId>                <version>${tika.version}</version>                <exclusions>                    <exclusion>                        <artifactId>commons-io</artifactId>                        <groupId>commons-io</groupId>                    </exclusion>                </exclusions>            </dependency>            <!-- 解析文档 必须 -->            <dependency>                <groupId>org.springframework.ai</groupId>                <artifactId>spring-ai-tika-document-reader</artifactId>                <version>${spring-ai.version}</version>            </dependency>            <!-- 解析文档 必须 -->            <dependency>                <groupId>commons-io</groupId>                <artifactId>commons-io</artifactId>                <version>${commons-io.version}</version>            </dependency>spring: application: name: RuoYi-Vue-Plus ai: vectorstore: milvus: initialize-schema: true database-name: default collection-name: test client: host: milvus服务ip地址 port: 19530 username: root password: milvus
# 字段1doc_id:文档id,也就是表ai_knowledge_segment中对应的字段vector_id,方便验证、查询
# 字段2embedding:向量维度,利用向量模型nomic-embed-text解析成向量,需要指定维度768,如果是1024或其它会报错!
# 字段3content:文档内容,利用tika解析文档
# 字段4metadata:元数据,需要存储业务数据,如知识库id、文档id
    /**     * 上传文档列表     *     * @param bo     * @return     */    @PostMapping("/createKnowledgeDocumentList")    public R<List<Long>> createKnowledgeDocumentList(@RequestBody AiKnowledgeDocumentListBo bo) {        return R.ok(aiKnowledgeDocumentService.createKnowledgeDocumentList(bo));    }/** * 上传文档列表 * * @param bo * @return */ List<Long> createKnowledgeDocumentList(AiKnowledgeDocumentListBo bo);
/*** 上传文档列表** @param bo* @return*/(rollbackFor = Exception.class)public List<Long> createKnowledgeDocumentList(AiKnowledgeDocumentListBo bo) {// 校验aiKnowledgeService.validateKnowledgeExists(bo.getKnowledgeId());if (ObjectUtil.isEmpty(bo.getList())) {throw new ServiceException("至少上传一个文件");}// 批量读取文档内容List<AiKnowledgeDocument> aiKnowledgeDocuments = prepareDocuments(bo);baseMapper.insertBatch(aiKnowledgeDocuments);// 切片processDocumentSegment(aiKnowledgeDocuments);return extractDocumentIds(aiKnowledgeDocuments);}
VectorStore getOrCreateVectorStore(Class<? extends VectorStore> type, EmbeddingModel embeddingModel, Map<String, Class<?>> metadataFields);
public VectorStore getOrCreateVectorStore(Long embedModelId, Map<String, Class<?>> metadataFields) {// 获取模型信息AiModelVo aiModelVo = validateModel(embedModelId);AiApiKeyVo aiApiKeyVo = aiApiKeyService.validateApiKey(aiModelVo.getKeyId());AiPlatformEnum aiPlatformEnum = AiPlatformEnum.validatePlatform(aiApiKeyVo.getPlatform());// 创建或获取嵌入模型EmbeddingModel embeddingModel = modelFactoryService.getOrCreateEmbeddingModel(aiPlatformEnum, aiApiKeyVo.getApiKey(), aiApiKeyVo.getUrl(), aiModelVo.getModel());return modelFactoryService.getOrCreateVectorStore(MilvusVectorStore.class, embeddingModel, metadataFields);}
加入技术群可以获取资料,含AI资料、Spring AI中文文档等,等你加入~
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-10-31
Opera One升级内置AI 迎来智能助手新纪元
2025-10-31
LangExtract——大模型文本提炼工具
2025-10-31
用户测评|DeepSeek-OCR,你用了吗?
2025-10-31
从Palantir智能化技术路线看AI时代企业级架构平台的核心战略位置
2025-10-31
OpenAI 公开 Atlas 架构:为 Agent 重新发明浏览器
2025-10-31
Palantir 本体论模式:重塑企业 AI 应用的 “语义根基” 与产业启示
2025-10-31
树莓派这种“玩具级”设备,真能跑大模型吗?
2025-10-30
Cursor 2.0的一些有趣的新特性
 
            2025-08-21
2025-08-21
2025-08-19
2025-09-16
2025-10-02
2025-09-08
2025-09-17
2025-08-19
2025-09-29
2025-08-20