微信扫码
添加专属顾问
我要投稿
大模型蒸馏技术揭秘:如何让小模型拥有大智慧? 核心内容: 1. 大模型蒸馏的核心原理与软标签的独特价值 2. 两阶段蒸馏流程与关键技术实现步骤 3. 学生模型架构设计与知识迁移的扩展方法
蒸馏的本质是知识迁移,而非简单的模型压缩。其核心在于利用教师模型提供的软标签(Soft Labels) 作为更丰富的监督信号,替代传统训练中仅使用的硬标签(Hard Labels)。
硬标签 vs. 软标签
温度系数(Temperature Scaling)
蒸馏过程分为两个阶段:教师模型训练 和 学生模型蒸馏。
学生模型通过联合损失函数进行训练,同时学习教师模型的软标签和真实数据的硬标签:
学生模型架构设计
蒸馏目标扩展
在线蒸馏(Online Distillation)
数据增强与迁移
53AI,企业落地大模型首选服务商
产品:场景落地咨询+大模型应用平台+行业解决方案
承诺:免费POC验证,效果达标后再合作。零风险落地应用大模型,已交付160+中大型企业
2025-12-17
吴恩达最新课程:别再只写Prompt了!掌握Agentic AI,让AI自主工作!
2025-12-17
开发者能用 ChatGPT App 赚钱了|机会,留给晚睡的人
2025-12-17
一位网友逆向破解了 ChatGPT 记忆系统,给我干破防了
2025-12-16
深度研究:我们如何构建水平最先进Agent
2025-12-16
原来ChatGPT的记忆是这么做的
2025-12-16
陈天桥丨系统的融化:从AI赋能到AI原生
2025-12-16
Google Disco:新型浏览器+Gemini3,信息不只是文字总结
2025-12-16
Claude MCP 和 Skills 的微妙关系
2025-09-19
2025-10-26
2025-10-02
2025-09-29
2025-10-07
2025-09-30
2025-11-19
2025-10-20
2025-11-13
2025-10-02
2025-12-16
2025-12-15
2025-12-14
2025-12-12
2025-12-12
2025-12-11
2025-12-09
2025-12-08